

Audit Report
The Second Best
July 2025

Network BSC

Address 0xBf006b86C09aa50C15793680e27f41F00e13c214

Audited by © cyberscope

2ND Token Audit 1

Analysis
 ⬤ Critical ⬤ Medium ⬤ Minor / Informative ⬤ Pass

Severity Code Description Status

⬤ ST Stops Transactions Passed

⬤ OTUT Transfers User's Tokens Passed

⬤ ELFM Exceeds Fees Limit Passed

⬤ MT Mints Tokens Passed

⬤ BT Burns Tokens Passed

⬤ BC Blacklists Addresses Passed

2ND Token Audit 2

Diagnostics
 ⬤ Critical ⬤ Medium ⬤ Minor / Informative

Severity Code Description Status

⬤ MEM Missing Error Messages Unresolved

⬤ L09 Dead Code Elimination Unresolved

⬤ L19 Stable Compiler Version Unresolved

2ND Token Audit 3

Table of Contents
Analysis 1
Diagnostics 2
Table of Contents 3
Risk Classification 4
Review 5

Audit Updates 5
Source Files 5

Findings Breakdown 7
MEM - Missing Error Messages 8

Description 8
Recommendation 8

L09 - Dead Code Elimination 9
Description 9
Recommendation 9

L19 - Stable Compiler Version 10
Description 10
Recommendation 10

Functions Analysis 11
Inheritance Graph 13
Flow Graph 14
Summary 15
Disclaimer 16
About Cyberscope 17

2ND Token Audit 4

Risk Classification
The criticality of findings in Cyberscope’s smart contract audits is determined by evaluating

multiple variables. The two primary variables are:

1. Likelihood of Exploitation: This considers how easily an attack can be executed,

including the economic feasibility for an attacker.

2. Impact of Exploitation: This assesses the potential consequences of an attack,

particularly in terms of the loss of funds or disruption to the contract's functionality.

Based on these variables, findings are categorized into the following severity levels:

1. Critical: Indicates a vulnerability that is both highly likely to be exploited and can

result in significant fund loss or severe disruption. Immediate action is required to

address these issues.

2. Medium: Refers to vulnerabilities that are either less likely to be exploited or would

have a moderate impact if exploited. These issues should be addressed in due

course to ensure overall contract security.

3. Minor: Involves vulnerabilities that are unlikely to be exploited and would have a

minor impact. These findings should still be considered for resolution to maintain

best practices in security.

4. Informative: Points out potential improvements or informational notes that do not

pose an immediate risk. Addressing these can enhance the overall quality and

robustness of the contract.

Severity Likelihood / Impact of Exploitation

⬤ Critical Highly Likely / High Impact

⬤ Medium Less Likely / High Impact or Highly Likely/ Lower Impact

⬤ Minor / Informative Unlikely / Low to no Impact

2ND Token Audit 5

Review

Contract Name StandardToken

Compiler Version v0.8.20+commit.a1b79de6

Optimization 200 runs

Explorer https://bscscan.com/address/0xbf006b86c09aa50c15793680e2

7f41f00e13c214

Address 0xbf006b86c09aa50c15793680e27f41f00e13c214

Network BSC

Symbol 2ND

Decimals 18

Total Supply 21.000.001

Audit Updates

Initial Audit 30 Jul 2025

Source Files

Filename SHA256

contracts/StandardToken.sol 7a8412f412766a54b9a8a9733d981ef4d84

490ccae89be8f120c51bc7535802e

@openzeppelin/contracts-upgradeable/utils/Conte

xtUpgradeable.sol

2d3d7dc6e116cb8ebb8517208141cb3d0

950b337a285f15f8476ec3df29d824e

@openzeppelin/contracts-upgradeable/utils/Addre

ssUpgradeable.sol

db92fc1b515decad3a783b1422190877d2

d70b907c6e36fb0998d9465aee42db

https://bscscan.com/address/0xbf006b86c09aa50c15793680e27f41f00e13c214
https://bscscan.com/address/0xbf006b86c09aa50c15793680e27f41f00e13c214

2ND Token Audit 6

@openzeppelin/contracts-upgradeable/proxy/utils/

Initializable.sol

a2c4e5c274a586f145d278293ae33198cd

8f412ab7e6d26f2394c8949b32b24b

@openzeppelin/contracts-upgradeable/access/Ow

nableUpgradeable.sol

2d9e57d2a4b0775334be2968019c193937

7d45b69e8b724fe6bb80af47e28419

@openzeppelin/contracts/token/ERC20/IERC20.sol 7ebde70853ccafcf1876900dad458f46eb9

444d591d39bfc58e952e2582f5587

2ND Token Audit 7

Findings Breakdown

⬤ Critical 0

⬤ Medium 0

⬤ Minor / Informative 3

Severity Unresolved Acknowledged Resolved Other

⬤ Critical 0 0 0 0

⬤ Medium 0 0 0 0

⬤ Minor / Informative 3 0 0 0

2ND Token Audit 8

MEM - Missing Error Messages

Criticality Minor / Informative

Location contracts/StandardToken.sol#L179,229,261

Status Unresolved

Description

The contract is missing error messages. Specifically, there are no error messages to

accurately reflect the problem, making it difficult to identify and fix the issue. As a result, the

users will not be able to find the root cause of the error.

The contract includes functionality that performs value subtraction. If the subtracted value

exceeds the original value, the function will revert. However, the contract lacks error

messages to inform users of the reason for the revert.

_approve(sender, _msgSender(), _allowances[sender][_msgSender()] -
amount);
_approve(_msgSender(), spender, _allowances[_msgSender()][spender] -
subtractedValue);
...
_balances[sender] = _balances[sender] - amount;

Recommendation

The team is suggested to provide a descriptive message to the errors. This message can be

used to provide additional context about the error that occurred or to explain why the

contract execution was halted. This can be useful for debugging and for providing more

information to users that interact with the contract.

2ND Token Audit 9

L09 - Dead Code Elimination

Criticality Minor / Informative

Location contracts/StandardToken.sol#L296,338

Status Unresolved

Description

In Solidity, dead code is code that is written in the contract, but is never executed or

reached during normal contract execution. Dead code can occur for a variety of reasons,

such as:

● Conditional statements that are always false.

● Functions that are never called.

● Unreachable code (e.g., code that follows a return statement).

Dead code can make a contract more difficult to understand and maintain, and can also

increase the size of the contract and the cost of deploying and interacting with it.

_burn(address account, uint256 amount) internal virtual {
 require(account != address(0), "ERC20: burn from the zero address");
 _beforeTokenTransfer(account, address(0), amount);
 _balances[account] = _balances[account] - amount;
 _totalSupply = _totalSupply - amount;
 emit Transfer(account, address(0), amount);
}

function _setupDecimals(uint8 decimals_) internal virtual {
 decimals = decimals;
}

Recommendation

To avoid creating dead code, it's important to carefully consider the logic and flow of the

contract and to remove any code that is not needed or that is never executed. This can help

improve the clarity and efficiency of the contract.

2ND Token Audit 10

L19 - Stable Compiler Version

Criticality Minor / Informative

Location contracts/StandardToken.sol#L2

Status Unresolved

Description

The ^ symbol indicates that any version of Solidity that is compatible with the specified

version (i.e., any version that is a higher minor or patch version) can be used to compile the

contract. The version lock is a mechanism that allows the author to specify a minimum

version of the Solidity compiler that must be used to compile the contract code. This is

useful because it ensures that the contract will be compiled using a version of the compiler

that is known to be compatible with the code.

pragma solidity ^0.8.0;

Recommendation

The team is advised to lock the pragma to ensure the stability of the codebase. The locked

pragma version ensures that the contract will not be deployed with an unexpected version.

An unexpected version may produce vulnerabilities and undiscovered bugs. The compiler

should be configured to the lowest version that provides all the required functionality for the

codebase. As a result, the project will be compiled in a well-tested LTS (Long Term Support)

environment.

2ND Token Audit 11

Functions Analysis

Contract Type Bases

 Function Name Visibility Mutability Modifiers

StandardToken Implementation IERC20,
Initializable,
OwnableUpg
radeable

 Public ✓ -

 initialize Public ✓ initializer

 name Public -

 symbol Public -

 decimals Public -

 totalSupply Public -

 balanceOf Public -

 transfer Public ✓ -

 allowance Public -

 approve Public ✓ -

 transferFrom Public ✓ -

 increaseAllowance Public ✓ -

 decreaseAllowance Public ✓ -

 _transfer Internal ✓

 _mint Internal ✓

 _burn Internal ✓

 _approve Internal ✓

 _setupDecimals Internal ✓

2ND Token Audit 12

 _beforeTokenTransfer Internal ✓

2ND Token Audit 13

Inheritance Graph

2ND Token Audit 14

Flow Graph

2ND Token Audit 15

Summary
The Second Best contract implements a token mechanism. This audit investigates security

issues, business logic concerns and potential improvements. The Second Best is an

interesting project that has a friendly and growing community. The Smart Contract analysis

reported no compiler error or critical issues.

2ND Token Audit 16

Disclaimer
The information provided in this report does not constitute investment, financial or trading

advice and you should not treat any of the document's content as such. This report may not

be transmitted, disclosed, referred to or relied upon by any person for any purposes nor

may copies be delivered to any other person other than the Company without Cyberscope’s

prior written consent. This report is not nor should be considered an “endorsement” or

“disapproval” of any particular project or team. This report is not nor should be regarded as

an indication of the economics or value of any “product” or “asset” created by any team or

project that contracts Cyberscope to perform a security assessment. This document does

not provide any warranty or guarantee regarding the absolute bug-free nature of the

technology analyzed, nor do they provide any indication of the technologies proprietors'

business, business model or legal compliance. This report should not be used in any way to

make decisions around investment or involvement with any particular project. This report

represents an extensive assessment process intending to help our customers increase the

quality of their code while reducing the high level of risk presented by cryptographic tokens

and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk

Cyberscope’s position is that each company and individual are responsible for their own

due diligence and continuous security Cyberscope’s goal is to help reduce the attack

vectors and the high level of variance associated with utilizing new and consistently

changing technologies and in no way claims any guarantee of security or functionality of the

technology we agree to analyze. The assessment services provided by Cyberscope are

subject to dependencies and are under continuing development. You agree that your

access and/or use including but not limited to any services reports and materials will be at

your sole risk on an as-is where-is and as-available basis Cryptographic tokens are

emergent technologies and carry with them high levels of technical risk and uncertainty. The

assessment reports could include false positives false negatives and other unpredictable

results. The services may access and depend upon multiple layers of third parties.

About Cyberscope
Cyberscope is a TAC blockchain cybersecurity company that was founded with the vision

to make web3.0 a safer place for investors and developers. Since its launch, it has worked

with thousands of projects and is estimated to have secured tens of millions of investors’

funds.

Cyberscope is one of the leading smart contract audit firms in the crypto space and has

built a high-profile network of clients and partners.

The Cyberscope team

cyberscope.io

https://www.cyberscope.io

	Analysis
	
	Diagnostics
	Table of Contents
	
	Risk Classification
	Review
	Audit Updates
	Source Files

	Findings Breakdown
	MEM - Missing Error Messages
	Description
	Recommendation

	
	L09 - Dead Code Elimination
	Description
	Recommendation

	L19 - Stable Compiler Version
	Description
	Recommendation

	Functions Analysis
	Inheritance Graph
	Flow Graph
	Summary
	Disclaimer
	About Cyberscope

